Inequalities

So far we learned that <u>equalities</u> are comparisons in which the left side of the equation equals the right side of the equals sign. <u>Inequalities</u> are comparisons where the left side of an equation <u>does not equal</u> to the right side.

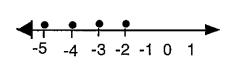
For example:
$$-3 \neq 6$$

 $-1 > -9$ All inequalities
 $3 < 7$

Solving inequalities is very similar to solving equalities but your answer will be a solution set often with more than one number as the answer.

Sometimes you will need to graph your solutions as number lines.

Graph for the above question:



Infinite set

Thickened arrow shows pattern continues in this direction and dots show only these numbers belong

left side right side
$$2x + 4 - x \ge 7$$
; $x \in W$ answers must be whole numbers

* simplify each side of equation

$$x+4 \ge 7$$
; $x \in W$

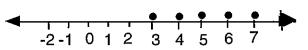
* collect variables then isolate variable

$$\begin{array}{ccc} x + 4 \ge 7 \\ & -4 & -4 \\ \hline x & \ge 3 \end{array}$$

solution is all whole numbers greater than or equal to 3

*

graph



Infinite Set

Example #3:

$$y + 7 + 10 > 15$$
; $y \in N$

$$z + 10 < 12$$
; $z \in W$

z is any whole number less than 2

{0, 1 } Finite set

no arrows thickened because finite set

Example #5:

$$z + 10 < 8$$
; $z \in W$
 $\frac{-10}{z} < -2$

No whole number is less than -2 so this is a null set

No dots or anything on graph

Solving Inequalities by multiplication or division

-5 < 2

If we multiply each side by 2, this is still true

2(-5) < 2(2)

-10 < 4

If we times each side by -2 this happens:

(-2)(-5)(-2)(2)

10 < -4 X NOT TRUE

so you can see that when you multiply each side of an equation by a negative, to make the statement true you must reverse the inequality. (same is true for division)

Therefore, reverse so 10 (>) -4

More Examples:

#1 $3p-7 \le 4$; $p \in Q \longrightarrow$ means rational numbers +7 +7

 $\frac{3p}{3} \le \frac{11}{3}$ Broker rational

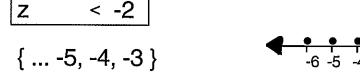
p ≤ <u>11</u> 3

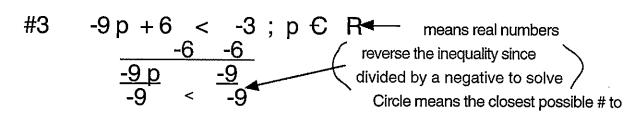
 Broken line indicates only the rational and not the irrational #'s between are included.

The dot over 11/3 means it is part of the solution and the arrow at the end shows the pattern continues forever.

8/3 9/3 10/3 11/3 12/3

-6z > 12 -6 -6 dividing by a negative, so to make this a true statement you must reverse the inequality!

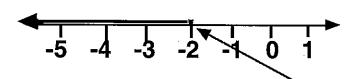




one is included in the set but one is not.

The entire line is thickened to show all of the possible #'s from one onward belong to the set of real (R) numbers. The thick arrow on the end means the trend continues forever in that direction.

#4
$$-3z-2 \ge z+6$$
; $z \in R$
 $+3z +3z$
 $-2 \ge 4z+6$
 $-6 -6$
 $-8 \ge 4z$
 $-2 > z$



The dot over the -2 indicates that it is included in the solution set and the thickened line and arrow shows that all numbers from -2 to infinity are included in the set also.